## Proposed Area of Excellence and Cluster Hire

in

## **Climate and Sustainability Studies**

Walter Oechel (Biology; Co-<u>Point of Contact</u>), Samuel Shen (Math and Stats; <u>Co-Point of Contact</u>), Trent Biggs (Geography), Chun-Ta Lai (Biology), Matthew Lauer (Anthropology)

# Climate change is one of the major challenges of the century

- We know that climate is changing, but we do not know the regional impacts.
- Appropriate scale is critical
- Current GCMs operate at a scale to course (50-100 kms) to inform policy and conservation.



Simulated precipitation over California in 2070–2099 (mm/day)

## **Objectives and Central Questions**

#### • Objective:

• To become a world-class, interdisciplinary center in climate and sustainability studies.

#### Central questions:

- How will the climate change in specific regions?
- How will ecosystems and humans be impacted by climate change?
- How will ecosystems and humans feedback and impact climate change?



#### Existing strengths and links

Ecosystems: Carbon and water (Oechel, Lipson, Lai) Climate uncertainty analysis (Shen)

#### Climate and Sustainability in Regions

Water, Watersheds And Land-Use (Biggs) Humanenvironment interactions (Braje, Lauer)



Ecosystems: Carbon and water (Oechel, Lipson, Lai)

Ecosystems-Landatmosphere interactions modeling Current gaps and new hires

Climate uncertainty analysis (Shen)

Next generation climate modeling aerosols and clouds

Climate and Sustainability in Regions

Regional climate change modeling

Watersheds, land use and water (Biggs) Human-climate archaeology, paleoclimate Humanenvironment interactions (Braje, Lauer)

## **Increased funding opportunities**

The hires enable our group to build on current expertise and apply for substantial funding, such as:

- NSF EaSM, IGERT, ARCSS
  - (Earth system modeling program), \$2m for 5 years.
  - (Integrative Graduate Education and Research Traineeship Program) \$1.5 M for 5 years.
  - (Arctic System Science) \$2.0 for 5 years.
- DOE Center Grant:
  - (Mathematical Multifaceted Integrated Capability Centers) \$2.5m for 5 years
- NASA Arctic ABoVE program (Arctic-Boreal Vulnerability Experiment) \$2.2m for 5 years

#### Goal: to double funding to \$5m/y

### **Communication and Coordination**

This Area of Excellence collaborates through a new Center for Climate and Sustainability Studies (C<sup>2</sup>S<sup>2</sup>) with:

- A Stakeholder and Expert Advisory Board to meet annually
- Steering Committee from C<sup>2</sup>S<sup>2</sup> faculty
- Monthly Seminars and hosting International conferences and meetings
- Monthly project meetings, frequent meetings on funding opportunities
- Joint supervision of Graduate Students (Ph.D. and M.Sc.)
- Support for SDSU Programs including the Sustainability Major and Environmental Sciences Major

### C<sup>2</sup>S<sup>2</sup> will support SDSU's strategic plan of regional and international outreach

- New: Stakeholder round table on climate and sustainability (policy makers, regulators, NGOs, business, utilities, educators)
- Enhance: Current K-12 Education. (e.g. NSF, County Office of Education)
- Enhance: Collaboration with CICESE in Ensenada, BC Mx (Center for Scientific Research and Higher Education)
- Enhance: The SDSU IRIP Program Development (including with Mexico, Italy, France, U.K., and China) (International Research Internship Program)

## C<sup>2</sup>S<sup>2</sup>'s unique regional distinction

- Our goal is that C<sup>2</sup>S<sup>2</sup> be equal in reputation to, but distinct from, climate studies at Scripps Institution of Oceanography (SIO)
- We are distinct in the following areas:
  - Impacts of climate change on ecosystems
  - Ecosystem feedbacks on climate change
  - Uncertainty quantification of climate change
  - Risk assessment
  - Human-Climate Interactions

In summary, C<sup>2</sup>S<sup>2</sup> will bring increased regional and international recognition to SDSU in the area of

#### **Climate and Sustainability Studies**

and

Will solve critical issues facing humankind



## Hire in Biology: Ecosystem Land Surface Modeler Use Regional Climate model output to predict

- - Greenhouse Gas Fluxes and Feedbacks
  - Vegetation, biodiversity, reserve areas
  - Water use and yield
  - Agricultural Productivity, incl. vineyards
- Highly desirable to funding agencies: including NSF, NASA, DOE, USDA



## Hire in Mathematics: Climate mathematician for the next generation of cloud-resolving models

- Random cloud, precipitation, and aerosol
- Uncertainty principle in climate models
- Ecological and human-climate dynamics
- NSF EaSM and DOE MMICC Center programs



#### Hire in Anthropology: Archaeologist of Human-Environmental Dynamics



Maya Collapse

Will Expand Anthropology with focus on:

- Ancient Human->Climate and Climate->Human impacts and Interactions
- Remote sensing, GIS modeling, isotopic analysis
- Examples of Human->Climate and Climate->Human Interactions and Feedbacks
- Funding: NSF Coupled Natural and Human Systems

### Hire in Geography: Regional climate modeler

Impact assessment requires regional climate simulations

- Topography is important
- Ocean-land interaction is important



Precipitation over California in 2070–2099 (mm/day) (Maurer, 2012)

## Potential Research Collaborations

Walter Oechel

C2S2

February 17, 2017





#### Sky Oaks Old Stand 1997-Current (Burned 2003) Continued in 2003 after the fire....



#### Sky Okas 1997-2003





#### Annual Chaparral NEE with time after fire





#### Young Stand (0-8 years old) Cumulative CO<sub>2</sub> uptake 2000-2006



#### Old Stand (> 150 years old) Cumulative CO<sub>2</sub> uptake 2000-2006



 Chaparral ecosystems are a significant CO<sub>2</sub> sink

 Old stands can be maintained for carbon sequestration and wildlife habitat

TERRESTRIAL CARBON FLUX

 Even though chaparral will periodically burn, it can still act as a net CO<sub>2</sub> sink.

- Decreased runoff
- Increased drought

- Reduced utility of MSCP and conservation reserves (without major redesign)
- Decreased Biodiversity
- Increased wildfire frequency and/or intensity (Increased fuels, increased fire weather, increased climate variability (wet and then dry)
- Increased summer monsoons
- Increased climate variability

### LIKELY REGIONAL OUTCOMES OF GLOBAL CHANGE



EFFECTS OF ANTECEDENT PRECIPITATION, STAND AGE, AND FIRE ON THE RESPONSE OF ECOSYSTEM FUNCTIONING TO DROUGHT IN ARID AND SEMI-ARID ECOSYSTEMS OF NORTH AMERICA

Walter C Oechel<sup>1</sup>, Thomas Bell<sup>2</sup>, Kristen Freeman<sup>1</sup>, Beniaminio Gioli<sup>3</sup>, Hiroki Ikawa<sup>1</sup>, Aram Kalhori<sup>1</sup>, William Lawrence<sup>4</sup>, Patrick Murphy<sup>1</sup>, Alessandra Rossi<sup>1</sup>

<sup>1</sup>San Diego State University, United States of America; <sup>2</sup>University of California, Santa Barbara, United States of America; <sup>3</sup>IBIMET, CNR, Florence, Italy; <sup>4</sup>Bowie State University, United States of America





## LA PAZ



## La Paz Study Site Climate



- Hot Arid Climate

   Köeppen's Climate
   Classification System
- Average Precipitation

   176.1 mm with majority
  - during late summer monsoon events
- Average Temperature

   23.6 °C with summertime highs >40 °C





#### Cardon Larrea desert

## Inter-annual Variability of NEE with Precipitation



## Seasonal Variability of NEE with

#### Precipitation



Hastings et al., 2005

## CLIMATE CHANGE EFFECTS ON VINES AND WINES

Molly Clemens, jDPE David Lipson Walt Oechel



20

### SALIENT RESEARCH QUESTIONS

- Investigate the role of rising atmospheric carbon dioxide and temperature on wine quality
- How can we work with vineyard owners on sustainable viticulture
  - > Water use
  - Carbon sequestration
  - Temperature tolerance




- Greenhouse project currently funded and underway
  - Using temperature gradient and CO<sub>2</sub> enrichment
- Necessary to assess berry quality long term
- > Measurements to be taken:
  - rates of evapotranspiration, soil salinity, berry salinity, xylem embolism
- Dry irrigation is a possibility for the future, many vineyards are switching to this more sustainable method

# PAIRED WITH GREENHOUSE EXPERIMENTS

| Year | Cost   | Offset | Anticipated<br>Direct Costs<br>Covered | Yield | Anticipated<br>Indirect<br>Benefits | Total Direct Cost/<br>Productivity: |
|------|--------|--------|----------------------------------------|-------|-------------------------------------|-------------------------------------|
| 2016 | 40,900 | 0      |                                        |       |                                     | -\$40,900                           |
| 2017 | 8,200  | 0      |                                        |       |                                     | -\$8,200                            |
| 2018 | 8,200  | 0      |                                        |       |                                     | -\$8,200                            |
| 2019 | 8,660  | 3,000  |                                        | +     |                                     | -\$5,660                            |
| 2020 | 8,890  | 4,800  | A                                      | +     |                                     | \$4,090                             |
| 2021 | 9,120  | 12,600 | A                                      | +     | B, C, D                             | \$3,480                             |





#### **Regional scale** FLUX AIRCRAFT TO MEASURE REGIONAL CO<sub>2</sub> AND CH<sub>4</sub> FLUXES (MOBILE FLUX PLATFORM CAN BE TRANSFERRED)

Back at elevator wing: net radiation (Kipp & temperature Zonen) (thin-wire & PAR in/out (LI-190) thermocouple) Novatel INS System (Not SDN500)  $CO_2/H_2O$ analyzer (LI-7500) \$ 505U 272SA SKY RRROW 650 TCN SAII DIECO STATE UNIVERSITY methane sensor (LI-7700) laser altimeter (Riegl) pressure, wind & speed and infrared surface directiontemperature (Everest) (BAT-proof)

## MAGDALENA BAY STUDY AREA



#### Zulueta, Oechel ét al. JTECH 2013

# AIRCRAFT NDVI (LEAF AREA), $CO_2$ SEQUESTRATION



Zulueta, Oechel et al. JTECH 2

## MANGROVE CO<sub>2</sub> SEQUESTRATION VS NDVI (LEAF AREA)



## SCRIPPS PIER, SAN DIEGO









## BOAT BASED FLUX MEASUREMENTS, SAN DIEGO



San Diego State University Ocean CO<sub>2</sub> uptake, Skadberg and Oechel unpubl.



Figure Sampling path across San Diego Bay and the CO<sub>2</sub> concentrations measured

Alexander Carsh JPDE



## Tributary of the Kapuas River, Borneo







#### CO<sub>2</sub> Flux In Kapuas River, Tributaries, and Estuary August 2010 0:30°S-0:30°N lat. 109°E-110°N long



#### 08/09/2010

4.14